博碩士論文 982406025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.227.0.192
姓名 林威廷(Wei-ting Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 硒化銅銦鎵薄膜缺陷對太陽能電池元件特性之影響
(Investigations on the defect properties of Cu(In,Ga)Se2 Solar Cells)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高效率硒化銅銦鎵(Cu(In,Ga)Se2, CIGS)薄膜太陽能電池採用共蒸鍍製程,其光電轉換效率可達20.8%,為目前薄膜太陽能電池中最具量產潛力的材料。但共蒸鍍製程難以克服大面積鍍膜的均勻性,為了符合業界量產的考量,因此本研究使用銅銦鎵(Cu-In-Ga, CIG)前驅物濺鍍-硒化法來製作CIGS薄膜。
CIGS薄膜的結晶品質及介面缺陷特性,為高效率電池元件的主要關鍵。在CIGS薄膜結晶部分,本研究藉由控制濺鍍功率及氬(Ar)離子轟擊方法,優化CIG前驅物的元素組成比例(Cu/(In+Ga)=1.2)及結晶相轉換(Cu11(In,Ga)9),得到晶粒尺寸大於1 μm的CIGS薄膜。
CIGS薄膜電池元件主要分為CIGS/Mo介面及CdS/CIGS介面。在CIGS/Mo介面部分,因硒化製程的關係,會形成高材料能隙且低導電率的硒化鉬(MoSe2)化合物,在電池元件中形成背電場效應。本研究藉由調整CIGS薄膜之Cu/In比例及硒化壓力,控制並優化MoSe2厚度,將電池元件效率從1.4%提升至5.2%。在CdS/CIGS介面部分,CIGS薄膜表面有硒化銅(CuxSe)、銅空缺(VCu)與硒空缺(VSe)等缺陷,本研究藉由使用Cd離子擴散法及電池元件後退火處理,修補CIGS薄膜表面缺陷,並且在CIGS薄膜表面形成n-CIGS:Cd的化合物反轉層,使電池元件形成埋藏式p-n接面,將電池元件效率從3.7%提升至7.3%。
摘要(英) Cu(In,Ga)Se2 (CIGS) thin film solar cell has been reported that a 20.8% of efficiency can be achieved using co-evaporation method. However, to using this method it is still difficult to scale up the area of good solar cells. In this study, CIGS thin films were prepared by using Cu-In-Ga (CIG) precursor sputtering-selenization process and then CIGS solar cells can be achieved.
For a high performance solar cell, the crystalline qualities and the interface properties of the CIGS film are very important. In this research, the stoichiometric ratio (Cu/(In+Ga)=1.2) and the phase transition (Cu11(In,Ga)9) of the CIG precursors were modified by using a sputtering process and an Ar-ion plasma etching process. The CIGS films with good crystalline properties and large grain size (1 μm) were achieved after the selenization process.
During the selenization process, a high band-gap material, MoSe2 compound was formed at the CIGS/Mo interface. The MoSe2 can increase the open-circuit voltaic of the solar cell due to the back surface field effect. However, the high resistivity (101-104Ω-cm) and peeling-off phenomenon at the CIGS/Mo interface were observed. The thicknesses of MoSe2 were modified by controlling the Cu/In ratio and selenization pressure. After the modification, the efficiency of the solar cell can be increased form 1.4% to 5.2%.
Another defects generated at the CdS/CIGS interface are CuxSe, Cu vacancy and Se vacancy. The short circuit current of solar cells will be reduced by the interface defects. So, these defects were passivated by using Cd ion soaking and post-annealing treatment. Based on this method, the efficiency of the solar cell can be increased form 3.7% to 7.3%
關鍵字(中) ★ 硒化銅銦鎵
★ 太陽能電池
★ 缺陷
★ 界面
★ 薄膜
關鍵字(英) ★ CIGS
★ solar cell
★ defect
★ interface
★ thin film
論文目次 第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 1
1.2.1太陽能電池之研究發展 1
1.2.2 CIGS薄膜製程介紹 7
1.3 研究動機 10
1.4 研究規劃 12
第二章 CIGS太陽能電池基本特性介紹 13
2.1 CIGS太陽能電池之各層薄膜介紹 13
2.1.1 金屬鉬(Mo)背電極 13
2.1.2 硒化銅銦鎵(CIGS)薄膜 15
2.1.3 硫化鎘(CdS)薄膜 17
2.2 電漿與濺鍍原理 19
2.2.1 電漿理論 20
2.2.2 濺鍍原理 21
2.3 硒化製程原理 24
2.3.1 一階段製程法 24
2.3.2 二階段製程法 26
2.4 化學水浴法製程原理 29
2.5 太陽能電池工作原理 32
2.5.1 p-n接面 32
2.5.2 太陽能電池輸出特性 34
第三章 CIGS薄膜缺陷理論基礎與分析方法 37
3.1 薄膜塊材(bulk)缺陷 37
3.1.1銅銦鎵(CIG)前驅物結晶相轉換 38
3.1.2 硒化銅銦鎵(CIGS)薄膜缺陷 40
3.2 介面缺陷 44
3.2.1 CIGS/Mo介面缺陷 44
3.2.2 CdS/CIGS介面缺陷 46
第四章 CIG前驅物特性對CIGS薄膜缺陷影響之結果分析 50
4.1 Cu-In前驅物之Cu/In比例對CIS薄膜特性之影響 50
4.2 CIG前驅物之結晶相轉換對CIGS薄膜特性之影響 59
4.3 本章結論 69
第五章 CIGS/Mo介面缺陷對CIGS電池元件影響之結果分析 70
5.1 Cu-In前驅物堆疊對MoSe2薄膜及電池元件特性之影響 70
5.2 硒化壓力調變對MoSe2薄膜及電池元件特性之影響 75
5.3 本章結論 80
第六章 CdS/CIGS介面缺陷對CIGS電池元件影響之結果分析 81
6.1鎘離子擴散處理對CdS/CIGS介面及電池元件特性之影響 81
6-1-1 Cd離子擴散之溫度調變 82
6-1-2 Cd離子擴散之NH3濃度調變 85
6.2後退火處理對CdS/CIGS介面及電池元件特性之影響 88
6.3 本章結論 95
第七章 結論 96
參考文獻 99
參考文獻 [1.1] Photon International, http:/www.photon-magazine.com/
[1.2] National Renewable Energy Laboratory (NREL), http://www.nrel.gov/
[1.3] R. Swanson, “Approaching the 29% limit efficiency of silicon solar cells”, Proceedings of the 3th IEEE photovoltaic specialist conference (IEEE, Florida, 2005), p.889.
[1.4] R. C. Chittick, J. H. Alexander, H. F. Sterling, “Preparation and properties of amorphous silicon”, J. Electrochem. Soc. 116 (1969) 77-81.
[1.5] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cells”, Appl. Phys. Lett. 28 (1976) 671-673.
[1.6] D. E. Carlson, C. R. Wronski, A. Triano, R. E. Daniel, “Solar cells using schottky barriers on amorphous silicon”, Proceedings of the 22nd IEEE photovoltaic specialist conference (IEEE, Baton Rouge, 1976), p.893-895.
[1.7] S. Ahn, S. Lee and H. Lee, "Toward commercialization of triple-junction thin-film silicon solar panel with >12% efficiency", Proceedings of the 27th European Photovoltaic Solar Energy Conference, Frankfurt, 2012.
[1.8] D. L. Staebler and C. R. Wronski, "Reversible conductivity changes in discharge-produced amorphous Si", Appl. Phys. Lett. 31 (1977) 292-294.
[1.9] J. I. Pankove and J. E. Berkeyheise, “Light-induced radiative recombination centers in hydrogenated amorphous silicon”, Appl. Phys. Lett. 37 (1980) 705-707.
[1.10] M. Stutzmann, W. B. Jackson and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study”, Phys. Rev. B 32 (1985) 23-47.
[1.11] J. A. Reimer, R. W. Vaughan and J. C. Knight, “Proton magnetic resonance spectra of plasma-deposited amorphous Si:H films”, Phys. Rev. Lett. 44 (1980) 193-196.
[1.12] D. E. Carlson, “Hydrogenated microvoids and light-induced degradation of amorphous silicon solar cell”, Appl. Phys. A. 41 (1986) 305-309.
[1.13] E. Bhattacharya and A. H. Mahan, “Microstructure and the light-induced metastability in hydrogenated amorphous silicon”, Appl. Phys. Lett. 52 (1988) 1587-1589.
[1.14] A. Matsuda, “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma”, J. Non-Cryst. Solids. 59 (1983) 767-774.
[1.15] C. Wang and G. Lucovsky, “Intrinsic microcrystalline silicon deposited by remote PECVD: A new thin-film photovoltaic material”, Proceedings of the 21st IEEE photovoltaic specialist conference (IEEE, Florida, 1990), p.1614-1618.
[1.16] R. Frerichs, “The photo-conductivity of incomplete phosphors”, Phys. Rev. 72 (1947) 594-601.
[1.17] D. A. Jenny and R. B. Bube, “Semiconducting cadmium telluride”, Phys. Rev. 96 (1954) 1190-1191.
[1.18] F. Krüger and D. D. Nobel, J. Electron. 1 (1955) 190-202.
[1.19] J. J. Loferski, “Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion”, J. Appl. Phys. 27 (1956) 777-784.
[1.20] P. Rappaport, “The photovoltaic effect and its utilization”, RCA Rev. 20 (1959) 373-397.
[1.21] R. Muller and R. Zuleeg, “Vapor‐deposited, thin‐film heterojunction diodes”, J. Appl. Phys. 35 (1964) 1550-1556.
[1.22] K. Yamaguchi, H. Matsumoto, N. Nakayama and S. Ikegami, “CdS-CdTe solar cell prepared by vapor phase epitaxy”, Jpn. J. Appl. Phys. 16 (1977) 1203-1211.
[1.23] H. Hahn, G. Frank, W. Klingler, A. Meyer and G. Störger, “Über einige ternäre chalkogenide mit chalcopyritestruktur“, Z. Anorg. U. Allg. Chemie 271 (1953) 153.
[1.24] S. Wagner, J. L. Shay, P. Migliorato and H. M. Kasper, “CuInSe2/CdS heterojunction photovoltaic detectors”, Appl. Phys. Lett. 25 (1974) 434-435.
[1.25] L. L. Kazmerski, F. R. White and G. K. Morgan, “Thin‐film CuInSe2/CdS heterojunction solar cells”, Appl. Phys. Lett. 29 (1976) 268-269.
[1.26] R. A. Mickelsen and W. S. Chen, “High photocurrent polycrystalline thin‐film CdS/CuInSe2 solar cell”, Appl. Phys. Lett. 36 (1980) 371.
[1.27] R. A. Mickelsen and W. S. Chen, “Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell”, Proceedings of the 15th IEEE photovoltaic specialist conference (IEEE, Orlando, 1981), p.800-904.
[1.28] K. C. Mitchell, J. Ermer, and D. Pier, “Single and Tandem Junction CuInSe2 Cell and Module Technology”, Proceedings of the 20th IEEE Photovoltaic Specialists Conference (IEEE, LasVegas, 1988), p.1384-1389.
[1.29] W. S. Chen, M. J. Stewart, B. J. Stanbery, W. E. Devaney and R. A. Mickelsen, “Development of thin film polycrystalline CuIn1-xGaxSe2 solar cells”, Proceedings of the 19th IEEE Photovoltaic Specialists Conference (IEEE, New Orleans 1987), p.1445-1447.
[1.30] T. Walter, A. Content, K. O. Velthaus and H. W. Schock, “Solar cells based on CuIn(Se, S)2”, Sol. Energy Mater. Sol. Cells 26 (1992) 357-368.
[1.31] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi and A. M. Hermann, “High‐efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films”, Appl. Phys. Lett. 65 (1994) 198-200.
[1.32] H. J. Moller, “Semiconductors for solar cells”, Boston, London: Artech House, 1993.
[1.33] J. R. Woodyard and G. A. Landis, “Radiation resistance of thin-film solar cells for space photovoltaic power”, Sol. Cells 31 (1991) 297-329.
[1.34] Manz, http://www.manz.com/tw/?welcome
[1.35] Solar Frontier, http://www.solar-frontier.com/eng/
[1.36] TSMC Solar, http://www.tsmc-solar.com/home
[1.37] AxunTek, http://www.axuntek.com/cht/cht.php
[1.38] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar cell efficiency tables (version 42)”, Prog. Photovolt: Res. Appl. 21 (2013) 827-837.
[1.39] T. Negami, T. Satoh, Y. Hashimoto, S. Nishwaki, S.-i. Shimakawa and S. Hayashi, “Large-area CIGS absorbers prepared by physical vapor deposition”, Sol. Energy Mater. Sol. Cells 67 (2001) 1-9.
[1.40] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, W. Metzger, R. Noufi, J. Ward and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt: Res. Appl. 11 (2003) 225-230.
[1.41] C. Eberspacher, K. Paul and J. Serra, “Non-vacuum processing of CIGS solar cells”, Conference Record of the 29th IEEE: Photovoltaic Specialists Conference (IEEE, New Orleans 2002), p.684-687.
[1.42] D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen and O. Kerrec, “Chalcopyrite thin film solar cells by electrodeposition”, Solar Energy 77 (2004) 725-737.
[1.43] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. Chey, L. Gignac and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films”, Thin Solid Films 517 (2009) 2158-2162.
[1.44] J. Palm, V. Probst and F. H. Karg, “Second generation CIS solar modules”, Solar Energy 77 (2004) 757-765.
[1.45] A. McEvoy, T. Markvart and L. Castaner, “Practical handbook of photovoltaics: Fundamentals and Applications”, Elsevier, second edition (2012).
[1.46] F. O. Adurodija, J. Song, S. D. Kim, S. H. Kwon, S. K. Kim, K. H. Yoon and B. T. Ahn, “Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container”, Thin Solid Films 338 (1999) 13-19.
[1.47] V. F. Gremenok, E. P. Zaretskaya, V. B. Zalesski, K. Bente, W. Schmitz, R. W. Martin and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas”, Sol. Energy Mater. Sol. Cells 89 (2005) 129-137
[1.48] J. H. Schon, V. Alberts and E. Bucher, “Structural and optical characterization of polycrystalline CuInSe2”, Thin Solid Films 301 (1997) 115-121.
[1.49] F. A. Abou-Elfotouh, H. Moutinho, A. Bakry, T. J. Coutts and L. L. Kazmerski, “Characterization of the defect levels in copper indium diselenide”, Solar Cells 30 (1911) 151-160.
[1.50] I. Dirnstorfer, W. Burkhardt, W. Kriegseis, I. O Osterreicher, H. Alves, D. M. Hofmann, O. Ka, A. Polity, B. K. Meyer, D. Braunger, “Annealing studies on CuIn(Ga)Se2: the influence of gallium”, Thin Solid Films 361 (2000) 400-405.
[1.51] S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells”, Phys. Status Solidi C 6 (2009) 1059-1062.
[1.52] Y.-D. Chung, D.-H. Cho, N.-M. Lee and J. Kim, “Effect of annealing on CdS/Cu(In,Ga)Se2 thin-film solar cells”, Curr. Appl. Phys. 11 (2011) S65-S67.
[1.53] S. Kijma and T. Nakada, “High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells”, Appl. Phys. Express 1 (2008) 075002.
[1.54] T. Wada, N. Kohara, S. Nishiwaki and T. Negami, “Characterization of the Cu(In,Ga)Se2 Mo interface in CIGS solar cells”, Thin Solid Films 387 (2001) 118-122.
[1.55] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, “Electrical properties of the Cu(In,Ga)Se2/Mo structure”, Sol. Energy Mater. Sol. Cells 67 (2001) 209-215.
[1.56] T. Nakada, D. Iga, H. Ohbo, and A. Kunioka, “Effects of sodium on Cu(In,Ga)Se2-based thin films and solar cells”, J. J. Appl. Phys. 36 (1997) 732-737.
[1.57] X. L. Zhu, Y. Wang, A. Li, L. Zhang and F. Huang, “The effect of N2 gas pressure during the rapid thermal process on the structural and morphological properties of CIGS films”, Adv. Mater. Res. 463 (2012) 614-617.
[1.58] J. Pouzet and J. C. Bernede, “MoSe2 thin films synthesized by solid state reactions between Mo and Se thin films”, Revue Phys. Appl. 25 (1990) 807-815.
[2.1] H. Khatri and S. Marsillac, “The effect of deposition parameters on radiofrequency sputtered molybdenum thin films”, J. Phys.: Condens. Matter, 20 (2008) 055206.
[2.2] F. A. Abou‐Elfotouh, L. L. Kazmerski, R. J. Matson, D. J. Dunlavy and T. J. Coutts, “Studies of the electrical and interface properties of the metal contacts to CuInSe2 single crystals”, J. Vac. Sci. Technol. A 8 (1990) 3251-3254.
[2.3] S. Ashour and S. Alkuhaimi, “Junction formation and characteristics of CdS/CulnSe2/metal interfaces”, Thin Solid Films 226 (1993) 129-134.
[2.4] R. J. Matson, O. Jamjoum, A. D. Buonaquisti, P. E. Russell, L. L. Kazmerski, P. Sheldon and R. K. Ahrenkiel, “Metal contacts to CuInSe2”, Solar Cells 11 (1984) 301-305.
[2.5] E. Moons, T. Engelhard and D. Cahen, “Ohmic contacts to p-CuInSe2 crystals” J. Electron. Mater. 22 (1993) 275-280.
[2.6] 李微,敖建平,何青,劉芳芳,李風岩,李長健,劉雲,《衬底對Cu(In,Ga)Se2薄薄膜织构的影响》,物理學報,56 (2007) 5009-5012.
[2.7] 林威廷,《摻鋁氧化鋅與金屬鉬的製備及特性研究》,長庚大學碩士論文 (2009)
[2.8] M. L. Colaianni, J. G. Chen W. H. Weinberg and J. T. Yates, Jr., “Oxygen on Mo(110): low-temperature adsorption and high-temperature oxidation”, Sur. Sci. 279 (1992) 211-222.
[2.9] L. Assmann, J. C. Bernède, A. Drici, C. Amory, E. Halgand, M. Morsli, “Study of Mo thin films and Mo/CIGS interface properties”, Appl. Sur. Sci. 246 (2005) 159-166.
[2.10] P. E. Russel, O. Jamjoum, R. K. Ahrenkiel, L. L. Kazmerski, R. A. Mickelsen and W. S. Chen, “Properties of the Mo-CuInSe2 interface”, Appl. Phys. Lett., 40 (1982) 995-997.
[2.11] W. N. Sharfarman and J. E. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells”, Proceeding of the 25th IEEE Photovoltaic Specialists Conference (IEEE, Washington, 1996), p.917-919.
[2.12] S.-Y. Kuo, L.-B. Chang, M.-J. Jeng, W.-T. Lin, Y.-T. Lu and S.-C. Hu, “Effects of growth parameters on surface-morphological, structural, electrical and strain properties of molybdenum films by RF magnetron sputtering”, Mater. Res. Soc. Symp. Proc. 1123 (2009) 1105-1118.
[2.13] S.-Y. Kuo, M.-J. Jeng, L.-B. Chang, W.-T. Lin, S.-C. Hu, Y.-T. Lu, and C.-W. Wu, “Optimization of growth parameters for improved adhesion and electricity of molybdenum films deposited by RF magnetron sputtering”, Proceedings of the 34th IEEE photovoltaic specialist conference (IEEE, Philadelphia, 2009), p.594-596.
[2.14] J. H. Scofield, A. Duda, D. Albin, B. L. Ballard and P. K. Predecki, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”, Thin Solid Films 260 (1995) 26-31.
[2.15] N. G. Dhere, A. A. Kadam, S. S. Kulkarni, S. M. Bet and A. H. Jahagirdar, “Large area CIGS2 thin film solar cells on foils: nucleus of a pilot plant”, Solar Energy 77 (2004) 697-703.
[2.16] M. L. Fearheiley, “The phase relations in the Cu, In Se system and the growth of CuInSe2 single crystals”, Solar cells 16 (1986) 91-100.
[2.17] M. Krejci, “Preparation and characterization of heteroepitaxial CuInxSey layers and Cu(In,Ga)Se2 substrate solar cells”, PhD thesis, ETH Zurich (1999).
[2.18] R. Noufi, R. Axton, C. Herrington and S. K. Deb, “Electronic properties versus composition of thin films of CuInSe2”, Appl. Phys. Lett. 45 (1984) 668-670.
[2.19] J. Nelson, “The physics of solar cells” Imperial College Press. (2003).
[2.20] U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges“, Appl. Phys. A69 (1999) 139-146.
[2.21] Q. Cao, O. Gunawan, M. Copel, K. B. Reuter, S. J. Chey, V. R. Deline and D. B. Mitzi, “Defect in Cu(In,Ga)Se2 chalcopyrite semiconductors: a comparative study of material properties, defect state, and photovoltaic performance”, Adv. Energy Mater. 1 (2011) 845-853.
[2.22] J. R. Sites and X. Liu, “Recent efficiency grains for CdTe and CuIn1-xGaxSe2 solar cells: What has chanded?”, Sol. Energy Mater. Sol. Cells 41/42 (1993) 373-379.
[2.23] D. L. Young, J. Keane, A. Duda, J. A M. AbuShama, C. L. Perkins, M. Romero and R. Noufi, “Improved performance in ZnO/CdS/CuGaSe2 thin-film solar cells”, Prog. Photovolt: Res. Appl. 11 (2003) 535-541.
[2.24] K. Yoshino, H. Yokoyama, K. Maeda and T. Ikari, “Crystal growth and photoluminescence of CuInxGa1-xSe2 alloys”, J. Cryst. Growth 211 (2000) 476-479.
[2.25] S. H. Wei, S. B. Zhang and Alex Zunger, “Effect of Ga addition to CuInSe2 on its electronic, structure and defect properties”, Appl. Phys. Lett. 72 (1998) 3199-3201.
[2.26] K. Ramanathan, M. A. Contreras, C. L. Perking, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Word and A. Duda, “Proeprties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt: Res. Appl. 11 (2003) 225-230.
[2.27] A. Rockett, “Performance-limitations in Cu(In,Ga)Se2-based heterojunction solar cells”, Proceedings of the 29th IEEE photovoltaic specialist conference (IEEE, 2003), p.587-591.
[2.28] M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt and W. Mannstadt, “Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency”, Prog. Photovolt: Res. Appl. 20 (2012) 843-850.
[2.29] D. Schmid, M. Ruckh and H. W. Schock, “A comprehensive characterization if the interfaces in Mo/CIS/CdS/ZnO solar cell structures”, Sol. Energy Mater. Sol. Cells 41/42 (1996) 281-294.
[2.30] D. Hariskos, S. Spiering and M. Powalla, ”Buffer layers in Cu(In,Ga)Se2 solar cells and modules”, Thin Solid Films 480-481 (2005) 99-109.
[2.31] National Renewable Energy Laboratory (NREL), http://www.nrel.gov/
[2.32] 中田時夫,《Cd free-高效率CIGS薄膜太陽能電池》,應用物理,74 (2005) 333-337.
[2.33] G. B. Turner, R. J. Schwartz and J. L. Gray, “Band discontinuity and bulk vs. interface recombination in CdS/CuInSe2 solar cells”, Proceedings of the 29th IEEE photovoltaic specialist conference (IEEE, 1988), p.1457-1460.
[2.34] K. A. Jones, “The lattice mismatch between (112) chalcopyrite films and (0001) CdS substrates”, J. Cryst. Growth 47 (1979) 235-244.
[2.35] S. S. Li, B. J. Stanbery, C. H. Huang, C. H. Chang, Y. S. Chang and T. J. Anderson, “Effects of buffer layer processing on CIGS excess carrier lifetime: application of dual-beam optical modulation to process analysis”, Proceedings of the 25th IEEE photovoltaic specialist conference (IEEE, Washington, 1996), p.821-824.
[2.36] 楊錦章,《基礎濺鍍電漿》,電子發展月刊,68 (1983) 13-40.
[2.37] W. R. Grove, “On the electro-chemical polarity of gases”, Philosophical Transactions of the Royal Society 142 (1852) 87-101.
[2.38] 莊達人,《VLSI製造技術》,高立圖書有限公司 (2005).
[2.39] K. Wasa and S. Hayakawa, “Handbook of Sputter Deposition Technology: Principles, Technology, and Applications”, Noyes publications (1992).
[2.40] 田民波,《薄膜技術與薄膜材料》,五南圖書出版股份有限公司 (2007)
[2.41] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社 (2009)
[2.42] T. Negami, T. Satoh, Y. Hashimoto, S. Nishwaki, S.-i. Shimakawa and S. Hayashi, “Large-area CIGS absorbers prepared by physical vapor deposition”, Sol. Energy Mater. Sol. Cells 67 (2001) 1-9.
[2.43] 中田時夫,《CIGS薄膜太陽電池の最新技術》,株式会社シーエムシー出版 (2010)
[2.44] J. L. Hernandez, M. L. Lucia, I. Martil, J. Santamaria, G. Gonzalez-Diaz and F. Sanchez-Quesada, “Chalcopyrite CuGaxIn1-xSe2 semiconducting thin films produced by radio frequency sputtering”, Appl. Phys. Lett. 60 (1992) 1875.
[2.45] J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus and I. D. Aggarwal, “Cu(In,Ga)Se2 thin films and devices sputtered from a single target without additional selenization“, Thin Solid Films 519 (2011) 7763-7765.
[2.46] J. Palm, V. Probst, A. Brummer, W. Stetter, R. Tolle, T. P. Niesen, S. Visbeck, O. Hernandez, M. Wendl, H. Vogt, H. Calwer, B. Freienstein and F. Karg, “CIS module pilot processing applying concurrent rapid selenization and sulfurization of large area thin film precursors”, Thin Solid Films 431 (2003) 514-522.
[2.47] H. K. Song, S. G. Kim, H. J. Kim, S. K. Kim, K. W. Kang, J. C. Lee and K. H. Yoon, “Preparation of CuIn1-xGaxSe2 thin films by sputtering and selenization”, Sol. Energy Mater. Sol. Cells 75 (2001) 145-153.
[2.48] G.-R. Hsu, S.-C. Hsu and Y. S. Liu, “Improvement of Ga distribution and enhancement of grain growth of CuInGaSe2 by incorporating a thin CuGa layer on the single CuInGa precursor”, Sol. Energy 86 (2012) 48-52.
[2.49] S. D. Kim, H. J. Kim, K. H. Yoon and J. Song, “Effect of selenization pressure on CuInSe2 thin films selenized using co-sputtered Cu-In precursors”, Sol. Energy Mater. Sol. Cells 62 (2001) 357-368.
[2.50] V. Probst, W. Stetter, W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K.-D. Ufert, B. Freienstein, H. Cerva and F. H. Karg, “Rapid CIS-process for high efficiency PV-modules: development towards large area processing“, Thin Solid Films 387 (2001) 262-267.
[2.51] K. Kushiya, “Improvement of electrical yield in the fabrication of CIGS-based thin-film modules”, Thin Solied Films 387 (2001) 257-261.
[2.52] S. J. Ahn, C. W. Kim, J. H. Yun, J. C. Lee and K. H. Yoon, “Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles”, Sol. Energy Mater. Sol. Cells 91 (2007) 1836-1841.
[2.53] W.-T. Lin, S.-H. Chen, S.-H. Chan, C.-L. Hsieh, S.-C. Hu, Y.-T. Lu and H.-C. Cheng, “Selenization of CIGS films with different Cu-In-Ga alloy precursors”, Procedia Eng. 36 (2012) 41-45.
[2.54] F. Karg, V. Probst, H. Harms, J. Rimmasch, W. Riedl, J. Holz, R. Treichler, O. Eibl, A. Mitwalsky and A. Kiendl, “Novel rapid-thermal-processing for CIS thin-film solar cells”, Proceedings of the 23th IEEE photovoltaic specialist conference (IEEE, Louisville, 1993), p.441-446.
[2.55] J. Keranen, J. Lu, J. Barnard, J. Sterner, J. Kessler, L. Stolt, Th. W. Matthes and E. Olsson, ”Effect of sulfurization on the microstructure of chalcopyrite thin-film absorbers”, Thin Solid Films 387 (2001) 80-82.
[2.56] D. Ohashi, T. Nakada and A. Kunioka, “Improved COGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor”, Sol. Energy Mater. Sol. Cells 67 (2001) 261-265.
[2.57] P. P. Sahay, R. K. Nath and S. Tewari, “Optical properties of thermally evaporated CdS thin films”, Cryst. Res. Technol. 42 (2007) 275-280.
[2.58] B. S. Moon, J. H. Lee and H. Jung, “Comparative studies of the properties of CdS films deposited on different substrates by R.F. sputtering”, Thin Solid Films 511-512 (2006) 299-303.
[2.59] H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka and H. Sonomura, “Thin CdS films prepared by metalorganic chemical vapor deposition”, Sol. Energy Mater. Sol. Cells 75 (2007) 219-226.
[2.60] J.-J. Zhu, Z.-Q. Xu, G.-Q. Fan, S.-T. Lee, Y.-Q. Li and J.-X. Tang, “Inverted polyer solar cells with atomic layer deposited CdS film as an electron collection layer“, Org. Electron. 12 (2011) 2151-2158.
[2.61] H. Khallaf, I. O. Oladeji, G. Chai and L. Chow, “Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources”, Thin Solid Films 516 (2008) 7306-7312.
[2.62] H. W. Schock and R. Noufi, “CIGS-based solar cells for the next millennium”, Prog. Photovolt. Res. Appl. 8 (2000) 151-160.
[2.63] Y. Hamakwa, “Thin-film solar cells: next generation photovoltaics and its applications”, Springer Series in Photonics (2004).
[2.64] D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann and A. N. Tiwari, ”Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells”, Thin Solid Films 480-481 (2005) 118-123.
[2.65] J. Kessler, M. Ruckh, D. Hariskos, U. Ruhle, R. Menner and H. W. Schock, “Interface engineering between CuInSe2 and ZnO”, Proceedings of the 23th IEEE photovoltaic specialist conference (IEEE, Louisville, 1993), p.441-446.
[2.66] R. Hunger, T. Schulmeyer, M. Lebedev, A. Klein, W. Jaegermann, B. Kniese, M. Powalla, K. Sakurai and S. Niki“, Removal of the surface inversion of CuInSe2 absorbers by NH3,aq. etching”, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (IEEE, Osaka, 2003) p.566-569.
[2.67] R. Hunger, T. Schulmeyer, A. Klein, W. Jaegermann, M. V. Lebedev, K. Sakurai and S. Niki“, SXPS investigation of the Cd partial electrolyte treatment of CuInSe2 absorbers”, Thin Solid Films 480-481 (2005) 218-223.
[2.68] Y.-J Chang, C. L. Munsee, G. S. Herman J. F. Wager, P. Mugdur, D.-H. Lee and C.-H. Chang, “Growth, characterization and application of CdS thin films deposited by chemical bath deposition”, Surf. Interface anal. 37 (2005) 398-405.
[2.69] 林峻平,《探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響》,國立中央大學大學碩士論文 (2012)
[2.70] A. McEcoy, T. Markvart and J. Castaner, ”Practical handbook of photovoltaics: fundamentals and applications”, second edition, Elsevier Academic Press (2012).
[2.71] M. A. Green, “Solar cells”, University of New South Wales, Sydney, Australia (1996).
[3.1] F. A. Abou-Elfotouh, H. Moutinho, A. Bakry, T. J. Coutts and L. L. Kazmerski, “Characterization of the defect levels in copper indium diselenide”, Solar Cells 30 (1991) 151-160.
[3.2] M. Konagia, Y. Ohtake and T. Okamoto, “Development of Cu(InGa)Se2 thin film solar cells with Cd-Free buffer layers”, Mater. Res. Soc. Symp. Proc. 426 (1996) 153-164.
[3.3] A. Polity, R. Krause-Rehberg, T. E. M. Staab, M. J. Puska, J. Klais, H. J. Moller and B. K. Meyer, “Study of defects in electron irradiated CuInSe2 by positron lifetime spectroscopy”, J. Appl. Phys. 83 (1998) 71.
[3.4] S. M. Wasim, C. Rincon and G. Marin, “Electricak properties of the ordered defect compound CuIn3Se5”, Phys. Stat. Sol. (a) 194 (2002) 244-252.
[3.5] R. R. Philip and B. Pradeep, “Structural analysis and optical and electrical characterization of the ordered defect compound CuIn5Se8”, Semicond. Sci. Technol. 18 (2003) 768-773.
[3.6] J. AbuShama, R. Noufi, S. Johnston, S. Ward and X. Wu, “Improved performance in CuInSe2 and surface-modified CuGaSe2 solar cells”, Proceedings of the 31th IEEE photovoltaic specialist conference (IEEE, New York, 2005), p.299.
[3.7] P. R. Subramanian and D. E. Laughlin, “The Cu-In (copper-indium) system”, Bulletin of Alloy Phase Diagrams, 10 (1989) 554-610.
[3.8] T. B. Massalski, “The mode and morphology of massive transformations in Cu-Ga, Cu-Zn, Cu-Zn-Ga and Cu-Ga-Ge allys”, Acta metal. 6 (1958) 243-253.
[3.9] N Orbey, G. A. Jones, R. W. Birkmire and T. W. Russell, “Copper-indium alloy transformations”, J. Phase Equilib. 21 (2000) 509-513.
[3.10] W. Keppner, T. Klas, W. Korner, R. Wesche and G. Schatz, “Compound formation ar Cu-In thin-film interface detected by perturbedγ-γangular correlations”, Phys. Rev. Lett. 54 (1985) 2371-2374.
[3.11] P. Berwian, “Experimentelle untersuchung und modellierung der bildungskinetik von CuInSe2-basierten halbleiter-dunnschichten fur die solarzellenherstellung”, Alexander University, PhD. Thesis (2005).
[3.12] M. Purwins, R. Ebderle, M. Schmid, P. Berwian, G. Muller, F. Hergert, S. Jost and R. Hock, “Phase relations in the ternary Cu-Ga-In system“, Thin Solid Films 515 (2007) 5895-5898.
[3.13] T. Negami, N. Kohara, M. Nishitani, T. Wada and T. Hirao, “Preparation and characterization of Cu(In1-xGax)3Se5 thin films”, Appl. Phys. Lett. 67 (1995) 825.
[3.14] Y. Okano, T. Nakada and A. Kunioka, “XPS analysis of CdS/CuInSe2 heterojunctions”, Sol. Energy Mater. Sol. Cells 50 (1998) 105-110.
[3.15] S. C. Park, D. Y. Lee, B. T. Ahn, K. H. Yoon and J. Song, “Fabrication of CuInSe2 films and solar cells by the sequential evaporation of In2Se3 and Cu2Se binary compounds”, Sol. Energy Mater. Sol. Cells 69 (2001) 99-105.
[3.16] F. O. Adurodija, J. Song, S. D. Kim, S. H. Kwon, S. K. Kim, K. H. Yoon and B. T. Ahn, “Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container”, Thin Solid Films 338 (1999) 13-19.
[3.17] V. F. Gremenok, E. P. Zaretskaya, V. B. Zalesski, K. Bente, W. Schmitz, R. W. Martin and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes” Sol. Energy Mater. Sol. Cells 89 (2005) 129-137.
[3.18] H. Okimura and T. Matsumae, “Electrical properties of Cu2-xSe thin films and their application for solar cells”, Thin Solid Films 71 (1980) 53-59.
[3.19] J. R. Tuttle, M. A. Contreras, A. Tennant, D. Albin and R. Noufi, “High efficiency thin-film Cu(In,Ga)Se2-based photovoltaic devices : progress towards a universal approach to absorber fabrication”, Proceedings of the 23th IEEE photovoltaic specialist conference (IEEE, Louisville, 1993), p.415-421.
[3.20] T.-P. Hsieh, C.-C. Chuang, C.-S. Wu, J.-C. Chang, J.-W. Guo and W.-C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells“, Solid-State Electron. 56 (2011) 175-178.
[3.21] J.-C. Chang, C.-C. Chuang, J.-W. Guo, S.-C. Hsu, H.-R. Hsu, C.-S. Wu and T.-P. Hsieh, “A investigation of CuInSe2 thin film solar cells by using CuInGa precursor”, Nanosci. Nanotechnol. Lett. 3 (2011) 200-203.
[3.22] W. K. Kim, E. A. Payzant, S.Yoon and T. J. Anderson, “In situ investigation on selenization kinetics of Cu-In precursor using time-resolved high temperature X-ray diffraction”, J. Cryst. Growth 294 (2006) 231-235.
[3.23] T. Wada, N. Kohara, S. Nishiwaki and T. Negami, “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films 387 (2011) 118-122.
[3.24] A. McEcoy, T. Markvart and J. Castaner, ”Practical handbook of photovoltaics: fundamentals and applications”, second edition, Elsevier Academic Press (2012).
[3.25] J. Pouzet and J. C.Bernede, “MoSe2 thin films synthesized by solid state reactions between Mo and Se thin films,” Rev. Phys. Appl. 25 (1990) 807-815.
[3.26] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, T. Wada, Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure, Sol. Energy Mater. Sol. Cells 67 (2001) 209-215.
[3.27] T. Nakada, D. Iga, H. Ohbo and A. Kunioka, “Effects of sodium on Cu(In,Ga)Se2-based thin solid films and solar cells”, Jpn. J. Appl. Phys. 36 (1997) 732-737.
[3.28] S.-Y. Kuo, L.-B. Chang, M.-J. Jeng, W.-T. Lin, Y.-T. Lu and S.-C. Hu, “Effects of growth parameters on surface-morphological, structural, electrical and strain properties of molybdenum films by RF magnetron sputtering”, Mater. Res. Soc. Symp. Proc. 1123 (2009) 1105-1118.
[3.29] D. H. Shin, Y. M. Shin, J. H. Kim, B. T. Ahn and K. H. Yoon, “Control of preferred oritation of Cu(In,Ga)Se2 thin film by the surface modification of Mo film”, J. Electrochem. Soc. 159 (2012) B1-B5.
[3.30] O. Volobujeva, J. Kois, R. Traksmaa, K. Muska, S. Bereznev, M. Grossberg and E. Mellikov, “Influence of annealing conditions on the structural quality of CuInSe2 thin films”, Thin Solid Films 516 (2008) 7105-7109.
[3.31] O. Volobujeva, M. Altosaar, J. Raudoja and E. Mellikov, “SEM analysis and selenization of Cu-In alloy films producted by co-sputtering of metals”, Sol. Energy Mater. Sol. Cells 93 (2009) 11-14.
[3.32] X. Zhu, Y. Wang, A. Li, L. Zhang and F. Huang, “The effect of N2 gas pressure during the rapid thermal process on the structural and morphology properties of CIGS films“, Adv. Mater. Res. 463-464 (2012) 614-617.
[3.33] J. K. Sung, S. C. Kim, H. Park and W. K. Kim, “Cu(In,Ga)Se2 thin film photovoltaic absorber formation by rapid thermal annealing of binary stacked precursors“, Thin Solid Films 520 (2011) 1484-1488.
[3.34] J. Koo, S. Jeon, M. Oh, H.-I. Cho, C. Son and W. K. Kim, “Optimization of Se layer thickness in Mo/CuGa/In/Se precursor for the formation of Cu(In,Ga)Se2 by rapid thermal annealing”, Thin Solid Films 535 (2013) 148-153.
[3.35] W.-T. Lin, S.-H. Chan, S.-Z. Tseng, J.-J. He, S.-H. Chen, R.-F. Shih, C.-W. Tseng, T. T. Li, S.-C. Hu, W.-X. Peng and Y.-T. Lu, “Manipulation of MoSe2 films on CuIn(Ga)Se2 cells during rapid thermal process”, Int. J. Photoenergy 2014 (2014) 253285.
[3.36] D. Braunger, D. Hariskos, G. Bilger and H. W. Schock, ”Influence of sodium on the growth polycrystalline Cu(In,Ga)Se2 thin films”, Thin Solid Films 361-362 (2000) 161-166.
[3.37] X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li and F. Huang, “Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar cells”, Sol. Energy Mater. Sol. Cells 101 (2012) 57-61.
[3.38] J. H. Scofield, S. Asher, D. Albin, T. Tuttle, M. Contreras, D. Niles, R. Reedy, A. Tennant and R. Noufi, “Sodium diffusion, selenization, and microstructural effects associated with various molybdenum back contact layers for CIS-based solar cells”, Proceedings of the 24th IEEE photovoltaic specialist conference (IEEE, Waikoloa, 1994), p.164-167.
[3.39] J. Palm, V. Probst, A. Brummer, W. Stetter, R. Tolle, T. P. Niesen, S. Visbeck, O. Hernandez, M. Wendl, H. Vogt, H. Calwer, B. Freienstein and F. Karg, “CIS module pilot processing applying concurrent rapid selenization and sulfurzation of large area thin film precursors”, Thin Solid Films 431-432 (2003) 514-522.
[3.40] S.-H. Wei, S. B. Zhang and A. Zunger, “Effects of Na on the electrical and structural properties of CuInSe2“, J. Appl. Phys. 85 (1999) 7214-7218.
[3.41] M. Bodegard, K. Granath, L. Stolt and A. Rockett, “The behaviour of Na implanted into Mo thin films during annealing” Sol. Energy Mater. Solar Cells 58 (1999) 199-208.
[3.42] S.-Y. Kuo, M.-J. Jeng, L.-B. Chang, W.-T. Lin, S.-C. Hu, Y.-T. Lu, and C.-W. Wu, “Optimization of growth parameters for improved adhesion and electricity of molybdenum films deposited by RF magnetron sputtering”, Proceedings of the 34th IEEE photovoltaic specialist conference (IEEE, Philadelphia, 2009), p.594-596.
[3.43] W. N. Shafarman and J. Zhu, “Effect of substrate temperature and deposition profile on evaporated Cu(In,Ga)Se2 films and devices”, Thin Solid Films 361-362 (2000) 473-477.
[3.44] A. Duchatelet, G. Savidand, R. N. Vannier and D. Lincot, “Optimization of MoSe2 formation for Cu(In,Ga)Se2-based solar cells by using thin superficial molybdenum oxide barrier layers”, Thin Solid Films 545 (2013) 97-99.
[3.45] 林育俊,《界面特性對硒化銅銦鎵太陽能電池效能之影響》,國立東華大學碩士論文 (2010)
[3.46] Y.-C. Lin, M.-T. Shen, Y.-L. Chen, H.-R. Hsu and C.-H. Wu and C.-H. Wu, “A study on MoSe2 layer of Mo contact in Cu(In,Ga)Se2 thin film solar cells”, Thin Solid Films (2014) in Press.
[3.47] S. Wagner, J. L. Shay, P. Migliorato and H. M. Kasper, “CuInSe2/CdS heterojunction photovoltaic detectors”, Appl. Phys. Lett. 25 (1974) 434.
[3.48] D. Schmid, M. Ruckh, F. Grunwald and H. W. Schock, “Chalcopyrite/defect chalcopyrite heterojunction on the basis of CuInSe2”, J. Appl. Phys. 73 (1993) 2902.
[3.49] K. Ramanathan, R. N. Bhattacharya, J. Granata, J. Webb, D. Niles, M. A. Contreras, H. Wiesner, F.S. Hasoon, Noufi, “Advances in the CIS Research at NREL”, Proceedings of the 26th IEEE Photovoltaic Specialists Conference (IEEE, Anaheim, 1997), p.319.
[3.50] T. Wada, S. Hayashi, Y. Hashimoto, S. Nishiwaki, T. Satoh, T. Negami, M. Nishitani, “High efficiency Cu(In,Ga)Se2 (CIGS) solar cells with improved CIGS surface”, Proceedings of the 2nd World Conference Photovoltaic Solar Energy Conversion (IEEE, Vienna, 1998) p.403.
[3.51] T. Nakada, “Nano-structural investigations on Cd-doping into Cu(In,Ga)Se2 thin films by chemical bath deposition process”, Thin Solid Films 361-326 (2000) 346-352.
[3.52] 中田時夫,《CIGS薄膜太陽電池の最新技術》,株式会社シーエムシー出版 (2010)
[3.53] P. W. Yu, S. P. Faile and Y. S. Park, “Cadium-diffused CuInSe2 junction diode and photovoltaic detection”, Appl. Phys. Lett. 26 (1975) 384
[3.54] T. Nakada and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS film”, Appl. Phys, Lett. 74 (1999) 2444-2446.
[3.55] L. Kronik, U. Rau, J.-F. Guillemoles, D. Braunger, H.-W. Schock and D. Cahen, “Interface redox engineering of Cu(In,Ga)Se2-based solar cells: oxygen, sodium, and chemical bath effects”, Thin Solid Films 361-362 (2000) 353-359.
[3.56] P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electrolyte process”, Proceedings of the 29th IEEE photovoltaic specialist conference (IEEE, 2002), p.764-767.
[3.57] B. Lei, W. W. Hou, S.-H. Li, W. Yang, C.-H. Chung and Y. Yang, “Cadmium ion soaking treatment for solution processed CuInSxSe2-x solar cells and its effect on defect properties”, Sol. Energy Mater. Sol. Cells 95 (2011) 2384-2389.
[3.58] S. Kijima and T. Nakada, “High-temperature defradation mechanism of Cu(In,Ga)Se2-based thin film solar cells”, Appl. Phys. Express 1 (2008) 075002.
[3.59] J. H. Schon, V. Alberts and E. Bucher, “Structural and optical characterization of polycrystalline CuInSe2”, Thin Solid Films 301 (1997) 115-121.
[3.60] L. L. Kazmerski, O. Jamjoum, P. J. Ireland and S. K. Deb, ”Initial oxidation of CuInSe2”, J. Vac. Sci. Technol. 19 (1981) 467-471.
[3.61] I. Dirnstorfer, W. Burkhardt, W. Kriegseis, I. O Osterreicher, H. Alves, D. M. Hofmann, O. Ka, A. Polity, B. K. Meyer, D. Braunger, “Annealing studies on CuIn(Ga)Se2: the influence of gallium”, Thin Solid Films 361 (2000) 400-405.
[3.62] R. Hunger, T. Schulmeyer, M. Lebedev, A. Klein, W. Jaegermann, B. Kniese, M. Powalla, K. Sakurai and S. Niki“, Removal of the surface inversion of CuInSe2 absorbers by NH3,aq. etching”, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (IEEE, Osaka, 2003) p.566-569.
[3.63] R. Noufi, R. J. Matson, R. C. Powell and C. Herrington, “The role of oxygen in CuInSe2 thin films and CdS/CuInSe2 devices”, Solar Cells 16 (1986) 479-493.
[3.64] D. Cahen and R. Noufi, “Surface passivation of polycrystalline, chalcogenide based photovoltaic cells“, Solar Cells 30 (1991) 53-59.
[3.65] 莊宗曄,《濺鍍銅銦硒薄膜之硒處理研究》,國立高雄大學碩士論文 (2009)
[3.66] T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization”, Sol. Energy Mater. Sol. Cells 49 (1997) 295-290.
[4.1] F. O. Adurodija, J. Song, S. D. Kim, S. H. Kwon, S. K. Kim, K. H. Yoon and B. T. Ahn, “Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container”, Thin Solid Films 338 (1999) 13-19.
[4.2] F. O. Adurodija, M. J. Carter and R. Hill, “Solid-liquid recation mechanisms in the formation of high quality CuInSe2 by the stacked element layer (SEL) technique”, Sol. Energy Mater. Sol. Cells 37 (1995) 203-216.
[4.3] Y. Yan, K. M. Jones, R. Noufi and M. M. Al-Jassim, “Argon ion beam and electron beam-induced damage in Cu(In,Ga)Se2 thin films” Thin Solid Films 515 (2007) 4681-4685.
[4.4] F. A. Abou-Elfotouh, S. K. Kim, S. D. Kim, J. S. Song, K. H. Yoon and B. T. Ahn, “Characterization of co-sputtered Cu-In alloy precursors for CuInSe2 thin films fabrication by close-spaced selenization”, Sol. Energy Mater. Sol. Cells 55 (1998) 225-236.
[4.5] O. Volobujeva, M. Altosaar, J. Raudoja, E. Mellikov, M. Grossberg, L. Kaupmees and P. Barvinschi, “SEM analysis and selenization of Cu-In alloy films produced by co-sputtering of metals,” Sol. Energy Mater. Sol. Cells 93 (2009) 11-14.
[4.6] H. K. Song, J. K. Jeong, H. J, Kim, S. K. Kim and K. H. Yoon, “Fabrication of CuIn1-xGaxSe2 thin film solar cells by sputtering and selenization process”, Thin Solid Films 435 (2003) 186-192.
[4.7] W. Liu, Y. Sun, Y. Song, C.-J. Li, Q. He, F.-Y Li and J.-G. Tian, “Preparation of high quality Culn1-xGaxSe2 thin films by modified selenization procedure of sequential sputtering metallic precursors”, Proceedings of the 33rd IEEE Photovoltaic Specialists Conference (IEEE, San Diego, 2008), p.1-4.
[4.8] P. Berwian, “Experimentelle untersuchung und modellierung der bildungskinetik von CuInSe2-basierten halbleiter-dunnschichten fur die solarzellenherstellung”, Alexander University, PhD. Thesis (2005).
[4.9] H. Rodriguez-Alvarez, I. M. Koetschau, C. Genzel and H.W. Schock, “Growth paths for the sulfurization of Cu-rich Cu/In thin films”, Thin Solid Films 517 (2009) 2140-2144.
[4.10] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F. V. Kurdesau, A. N. Tiwari and M. Dobeli, “Formation and characterization of MoSe2 for Cu(In,Ga)Se2 based solar cells”, Thin Solid Films 480 (2005) 433-438.
[4.11] H. Park, S. C. Kim, S.-H. Lee, J. Koo, S. H. Lee, C.-W. Jeon, S. Yoon and W. K. Kim, “Effect of precursor structure on Cu(In,Ga)Se2 formation by reactive annealing”, Thin Solid Films 519 (2011) 7245-7249.
[4.12] E. Rudiger, J. Djordjevic, C. V. Klopmann, B. Barconed, A. Perez-Rodriguez and R. Scheer, “Real-time study of transformations in Cu-In chalcogenide thin films using in situ Raman spectroscopy and XRD”, J. Phys. Chem. Solids 66 (2005) 1954-1960.
[4.13] K. Yoshino, H. Yokoyama, K. Maeda and T. Ikari, “Crystal growth and photoluminescence of CuInxGa1-xSe2 alloys”, J. Cryst. Growth 211 (2000) 476-479.
[4.14] H. Tanino, T. Maeda, H. Fujikake, H. Nakanishi, S. Endo and T. Irie, “Raman spectra of CuInSe2”, Phys. Rev. B 45 (1992) 13323-13330.
[4.15] C. Rincon and F. J. Ramirez, “Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry”, J. Appl. Phy. 72 (1992) 4321-4324.
[4.16] T. Ohtani, Y. Tachibana, J. Ogura, T. Miyake, Y. Okada and Y. Yokota, “Physical properties and phase transitions of βCu2-xSe (0.20≦x≦0.25)”, J. Alloys Compd. 279 (1998) 136-141.
[4.17] R. R. Philip, B. Pradeep, G. S. Okram and V. Ganesan, “Investigations of the electrical properties in CuInSe2 and the related ordered vacancy compounds” Semicond. Sci. Technol 19 (2004) 798-806.
[4.18] T.-P. Hsieh, C.-C. Chuang, C.-S. Wu, J.-C. Chang, J.-W. Guo and W.-C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells“, Solid-State Electron. 56 (2011) 175-178.
[4.19] J.-C. Chang, C.-C. Chuang, J.-W. Guo, S.-C. Hsu, H.-R. Hsu, C.-S. Wu and T.-P. Hsieh, “A investigation of CuInSe2 thin film solar cells by using CuInGa precursor”, Nanosci. Nanotechnol. Lett. 3 (2011) 200-203.
[5.1] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F. V. Kurdesau, A. N. Tiwari and M. Dobeli, “Formation and characterization of MoSe2 for Cu(In,Ga)Se2 based solar cells”, Thin Solid Films 480 (2005) 433-438.
[5.2] H. Park, S. C. Kim, S.-H. Lee, J. Koo, S. H. Lee, C.-W. Jeon, S. Yoon and W. K. Kim, “Effect of precursor structure on Cu(In,Ga)Se2 formation by reactive annealing”, Thin Solid Films 519 (2011) 7245-7249.
[5.3] O. Volobujeva, J. Kois, R. Traksmaa, K. Muska, S. Bereznev, M. Grossberg and E. Mellikov, “Influence of annealing conditions on the structural quality of CuInSe2 thin films”, Thin Solid Films 516 (2008) 7105-7109.
[5.4] O. Volobujeva, M. Altosaar, J. Raudoja and E. Mellikov, “SEM analysis and selenization of Cu-In alloy films producted by co-sputtering of metals”, Sol. Energy Mater. Sol. Cells 93 (2009) 11-14.
[5.5] X. Zhu, Y. Wang, A. Li, L. Zhang and F. Huang, “The effect of N2 gas pressure during the rapid thermal process on the structural and morphology properties of CIGS films“, Adv. Mater. Res. 463-464 (2012) 614-617.
[5.6] L. Assmann, J. C. Bernede, A. Drici, C. Amory, E. Halgand and M. Morsli, “Study of Mo thin films and Mo/CIGS interface properties”, Appl. Surf. Sci. 246 (2005) 159-166.
[5.7] S. Lee, J. Koo, S. Kim, S.-H. Kim, T. Cheon, J. S. Oh, S. J. Kim and W. K. Kim, “Characteristics of MoSe2 formation during rapid thermal processing of Mo-coated glass”, Thin Solid Films 535 (2013) 206-213.
[6.1] F. A. Abou-Elfotouh, H. Moutinho, A. Bakry, T. J. Coutts and L. L. Kazmerski, “Characterization of the defect levels in copper indium diselenide”, Solar Cells 30 (1911) 151-160.
[6.2] I. Dirnstorfer, W. Burkhardt, W. Kriegseis, I. O Osterreicher, H. Alves, D. M. Hofmann, O. Ka, A. Polity, B. K. Meyer, D. Braunger, “Annealing studies on CuIn(Ga)Se2: the influence of gallium”, Thin Solid Films 361 (2000) 400-405.
[6.3] S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells”, Phys. Status Solidi C 6 (2009) 1059-1062.
[6.4] S. Kijima and T. Nakada, “High-temperature defradation mechanism of Cu(In,Ga)Se2-based thin film solar cells”, Appl. Phys. Express 1 (2008) 075002.
[6.5] P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electrolyte process”, Proceedings of the 29th IEEE photovoltaic specialist conference (IEEE, 2002), p.764-767.
[6.6] B. Lei, W. W. Hou, S.-H. Li, W. Yang, C.-H. Chung and Y. Yang, “Cadmium ion soaking treatment for solution processed CuInSxSe2-x solar cells and its effect on defect properties”, Sol. Energy Mater. Sol. Cells 95 (2011) 2384-2389.
[6.7] 何誌堅,《硫化鎘薄膜對軟性太陽電池特性之研究》,國立中央大學大學碩士論文 (2014).
[6.8] D. Cahen and R. Noufi, “Surface passivation of polycrystalline, chalcogenide based photovoltaic cells“, Solar Cells 30 (1991) 53-59.
[6.9] X. Wang, S. S. Li, W. K. Kim, S. Yoon, V. Craciun, J. M. Howard, S. Easwaran, O. Manasreh, O. D. Crisalle and T. J. Anderson, “Investigation of rapid thermal annealing on Cu(In,Ga)Se2 films and solar cells”, Sol. Energy Mater. Sol. Cells 90 (2006) 2855-2866.
[6.10] 林峻平,《探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響》,國立中央大學大學碩士論文 (2012).
[6.11] R. Hunger, T. Schulmeyer, M. Lebedev, A. Klein, W. Jaegermann, B. Kniese, M. Powalla, K. Sakurai and S. Niki“, Removal of the surface inversion of CuInSe2 absorbers by NH3,aq. etching”, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (IEEE, Osaka, 2003) p.566-569.
[6.12] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-ray photoelectron spectroscopy”, Eden Prairie: Physical Electronics Press. (1995).
[6.13] R. Hunger, T. Schulmeyer, M. Lebedev, A. Klein, W. Jaegermann, B. Kniese, M. Powalla, K. Sakurai and S. Niki“, Removal of the surface inversion of CuInSe2 absorbers by NH3,aq. etching”, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (IEEE, Osaka, 2003) p.566-569.
[6.14] C. Malitesta, D. Centonze, L. Sabbatini, P. G. Zambonin, L. P. Bicellib and S. Maffi, “Analytical characterization by X-Ray photoelectron spectroscopy of quaternary chalcogenides for cathodes in lithium cells”, J. Mater. Chem. 1 (1991) 259-263.
[6.15] T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization”, Sol. Energy Mater. Sol. Cells 49 (1997) 295-290.
[6.16] M. Bär, W. Bohne, J. Röhrich, E. Strub, S. Lindner, M. C. Lux-Steiner, Ch.-H. Fischer, T. P. Niesen and F. Karg, “Determination of the band gap depth profile of the penternary Cu(In(1-x)Gax)(SySe(1-y))2 chalcopyrite from its composition gradient”, J. Appl. Phys. 96 (2004) 3857-3860. [6.17] G. A. Medvedkin, E. I. Terukov, Y. Hasegawa, K. Hirose and K. Sato, “Microdefects and point defects optically detected in Cu(In.Ga)Se2 thin film solar cells exposed to the damp and heating”, Sol. Energy Mater. Sol. Cells 75 (2003) 127-133.
[6.18] A. F. Halverson, ”The role of sulfur alloying in defects and transitions in copper indium gallium diselenide disulfide thin films”, PhD thesis, University of Oregon (2007).
[6.19] S. Shirakata, K. Ohkubo, Y. Ishii and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells”, Sol. Energy Mater. Sol. Cells 93 (2009) 988-992.
[6.20] 施敏,《半導體元件物理與製作技術》,國立交通大學出版 (2002).
[6.21] M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield and R. Noufi, “High efficiency Cu(In,Ga)Se2-based solar cells: processing of novel absorber structures”, Proceedings of the 24th IEEE Photovoltaic Specialists Conference (IEEE, Walkoloa, 1994), p. 68-75.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明